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thermal  vibrations of the iodine atoms were also ob- 
served along c. These facts indicate that the structure 
of the crystal has no strong intermolecular force in the 
c direction. 
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Restraints on phases are imposed when a molecule crystallizes in different crystal forms or occurs 
more than once per asymmetric unit. These restrictions are expressed by the equations 

U q-DO N 
IF~I exp {&ao} = - -  Z IFnl exp {&h 27 anpn exp {i~0npn}. 

V h=--oo n=l 

Here IFpl, aj,, IF~I, and ~ are the structure factors and their phases at the reciprocal lattice points 
p and h in either the same or different crystals. G~n and ~0np,~ are simple functions of the rotation and 
translation parameters relating the molecules in the structures concerned. These equations have been 
tested in both one and three dimensions. In the one-dimensional case the same arbitrary electron 
density distribution was repeated several times at irregular intervals within the unit cell. All chosen 
distributions led to equations that could be solved correctly, suggesting that in general there is a unique 
solution. Refinement of initial approximate translation parameters during phase solution was also 
successful. 

Introduction 

When there are chemically identical molecules in dif- 
ferent crystallographic environments,  the phase prob- 
lem may be approached in three distinct stages. The 
first stage involves determining the three rotation pa- 
rameters that  relate any two molecules. The rotation 
fuction (Rossmann & Blow, 1962; Sasada, 1964) has 

proved successful for this purpose in a number  of  cases 
I Blow, Rossmann & Jeffery, 1964; Prothero & Ross- 
mann,  1964; Dodsen,  Harding,  Hodgkin & Rossmann,  
1966; Palmer,  Palmer & Dickerson, 1964). The second 
stage involves determining the translat ion parameters 
that relate these molecules. A method of determining 
these parameters has been worked out in a special situa- 
tion when the independent  molecules are within the 

A C 21 - 5* 
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same crystal, related by a non-crystallographic two- 
fold rotation axis (Rossmann, Blow, Harding & Coller, 
1964). This was used in the case of chymotrypsin 
(Blow et al., 1964) and in insulin (Dodsen et al., 1965). 

The third and final stage is to determine the phases, 
given the results of the first two stages. Equations have 
been derived for this purpose in the case of two inde- 
pendent molecules within the same crystal (Rossmann 
& Blow, 1963). These equations were solved in a two- 
dimensional problem for the innermost 35 reflections, 
but success was probably partly due to the somewhat 
linear shape of the molecule giving rise to a large low 
order reflection. The method is also exceedingly ex- 
pensive in terms of computer time, but a simpler and 
more powerful method of solution was given by Ross- 
mann & Blow (1964). Application of the latter to im- 
proving the phases of the two independent c~-chymo- 
trypsin molecules (Blow et al., 1964) showed that in 
this case the method did not give a unique answer. 

The present paper derives a set of equations for the 
third stage which are perfectly general. We show that 
a method based on that of Rossmann & Blow (1964), 
interlaced with refinement procedures, produces unique 
solutions, and that a general solution to the translation 
problem may be obtained simultaneously. 

The equations 

The structure factor F~ at the reciprocal lattice point 
p may be expressed as 

F~= Z ~Ol(Xn ) exp {2nip. xn}dxn (1) 
n=1 U 

where there are N identical molecules in the unit cell 
of the crystal, each molecule being enclosed within a 
volume U, and 01(xn) is the electron density at the point 
xn in the nth molecule. Let 

xn = [Cn]xl + dn (2) 

where [Cn] is the rotation matrix and dn the translation 
vector that relate the equivalent points xx and xn in the 
first and nth molecules repectively. Thus [C1] = [I], the 
identity matrix, and d~ =0. If there is only one molecule 
per asymmetric unit then [Cn] and dn are purely space 
group operators. 

Since Ql(xn)=01(Xl) by definition, we have from (1) 
and (2) 

N IUQI(X1) F~= 27 exp {2nip. ([Cn]Xl-t-dn)}dXl. (3) 
n=l 

Now let Q(x) be the electron density at a point x in a 
second crystal which contains the same molecule so 
that 0(x)= Q~(xx) within the molecular volume U. If the 
'second' crystal is the same as the first then 0 and Q~ 
are identical. Expressing Q(x) in terms of a Fourier 
summation we get 

1 +,o 
Z' Fn exp { - 2 n i h .  x} (4) Q(x) = T h = - .  

where Fh is the structure factor at the reciprocal lattice 
point h and V is the volume of the unit cell. 

Let 
x = [C]. xl + d (5) 

where [C] is the rotation matrix and d the translation 
vector relating the equivalent points Xl and x in the 
'p' and 'h' crystals respectively. 

We can eliminate x from (4) by using (5), and this 
gives us 0(xl) which, by definition, is identical with 
Ql(Xl) within the volume U. Putting this into (3) we 
obtain 

F~ = Z h exp { -  2nih. ([C]. xl + d)} 
n=l u V  h=-- 

exp {2nip. ([Cn]. xl +dn)}dxl 
which, after rearrangement, becomes 

1 +oo N 
Z 27 Fh exp {2ni(p. d n - h .  d)} F:o= ---V h=-o~ n=l 

lv exp {2ni(p. [ C n ] - h .  [C]). X l } d X  1 . (6) 

The integral part of the expression is the same as that 
described by Rossmann & Blow (1962) and is the 
Fourier transform of the volume U. It may be repre- 
sented by a magnitude UGh~n and a phase Oh~n. In 
the case of a sphere or a parallelepiped, the two most 
commonly used 'molecular envelopes', the phase is 
given by 

£2apn=2n(p. [ C n ] - h .  [C]). S, (7) 

where S 1 is the position of the geometric center of the 
first molecular envelope in the 'p' crystal. 

g +co N 
. ' .  Fp=  --V-hS~o ,-1Z Fk exp {2ni(p. d n - h .  d)}Gh~o, 

exp {2ni(p. [ C n l - h .  [C]). Sa} 
g +oo N 

.S .Z FhGnIon exp {2hi i.e. F ~ :  --~ h=--¢o n=l 

[p. ( d n + [ C n ] .  S1) - -h .  ( d + [ C ] .  S,)]}.  (8) 

Let Sn be the nth position of the centre of the volume 
U in the 'p' crystal and let S be a corresponding point 
in the 'h' crystal, then from (2) and (5) we get 

S n = [ C n ] . S l + d n  and S = [ C ] . S l + d .  (9) 

By writing the structure factors in terms of magnitude 
and phase and from (8) and (9) we arrive at the final 
equations 

U +oo N 
Z [Fh[ exp {iah} Z Gh~on IF~I exp {&~v} = ~ h=-oo n=l 

exp {2n i~ .  S n - h .  S)}. (10) 

As an example of an expression for Gh~n we can 
take the case of a sphere of radius R, 

3(sin 2 n H R -  2nHR cos 2nHR) (11) 
Gn~n = (2nHR) 3 - - - - ,  

where H is the length of the vector p .  [ C n ] - h .  [C]. 
The shape of this function is shown in Fig. 1 of Ross- 
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mann & Blow (1962). In general, as H increases Gnpn 
decreases, so only those values of h which make H 
small need be included in equation (10), the remaining 
h values giving rise to negligible values for Ghpn. 

Once the rotation and translation parameters relating 
all molecules in every crystal have been determined, the 
only unknowns in (10) are the phases c~n and c~p. 

It must be pointed out that (10) refers only to a 
single set of equations, whereas several such sets of 
equations may generally be obtained for a single prob- 
lem. If we have two crystals A and B, then making 
A the 'h' crystal and B the 'p' crystal will produce a 
different set of equations than when A is the 'p' and 
B is the 'h' crystal. In addition, (10) refers to only one 
molecule in crystal 'h' - that located within the envelope 
centered on S - but generally there will be more than 
one molecule in the unit cell of this crystal. Different 
sets of equations result by taking S at each independent 
molecule in turn, but the same set of equations is 
obtained when the different positions of S are related 
by space-group symmetry. This is shown in the Ap- 
pendix. It should also be noted that the 'h' and 'p' 
crystals can be identical, though if there is only one 
molecule per asymmetric unit, the equations reduce to 
Fz,=Fz, and give no phase information. With more 
than one independent molecule, however, a legitimate 
set of equations is obtained. 

Clearly, the more crystals and independent molecules 
there are, the more equations can be set up in relation 
to the number of unknown phases. The problem there- 
fore becomes progressively more over-determined as 
the number of independent molecules increases. 

Accuracy of the equations 

In a practical case, it will be difficult to define an envel- 
ope of volume U within which a single molecule is 
completely contained without any part of any other 

ima, mary 

W 

real 

Fig. 1. W is the distance between the end of  the vector  Fo or 
left hand side of the equations, and the end of the vector 
Fc, or sum of the right hand side terms. 

molecule. Our experiments have not allowed for this 
type of error. It is hoped that if only a small amount 
of electron density is present in the envelope in ad- 
diton to the molecule, or if only a small part of the 
molecule is left outside the envelope, then the accuracy 
with which the equations are satified will not be greatly 
affected. Subsequent refinement of the structure should 
reveal the molecule more accurately. This, in turn, 
will lead to more accurate satisfaction of the equations. 

The accuracy of the equations may be defined by 
the usual crystallographic R index. If Fo is the left hand 
side of an equation, Fc the resultant of the right hand 
side sum and W is the magnitude of the vector differ- 
ence btweeen them, as in Fig. 1, we can define 

S W  
R -  

Z I F o l  " 

The equations have been set up in a three-dimen- 
sional case (to be published) in which one crystal 
consisted of four identical molecules in the unit cell 
of space group P2~ and another crystal of four mol- 
ecules in the unit cell of space group P2~2~2a. The 
magnitude of Gh~n was assumed to be negligible for 
arguments greater than 1-75 and only the fifty largest 
terms were considered in each equation. In this case 
the residual was 18yo. In every one-dimensional case 
for which 'observed' structure factors were calculated 
and the known phases used for substitution in the 
equations, a residual of less than 3 ~  was obtained. 
Even after introducing a 49/0 random error on the 
IFo] values, R was less than 5Wo. 

Solutions of the equations 

We have solved these equations for the phases of 
unknown structures under certain limited conditions, 
using methods similar to those described by Rossmann 
& Blow (1963, 1964) in conjunction with iterative re- 
finement procedures. In practice, however, only rough 
values of S and Sn in equation (10) will be known from 
packing considerations, so these were also refined dur- 
ing the solution of the equations. Fig. 2 shows a hypo- 
thetical one-dimensional structure in which there are 
three identical 'molecules' per asymmetric unit and 
which was used to test the equations. After imposing 
a 4Yo random error on the IFol values and starting 
with approximate relative positions of tl'/e molecules, 
all phases out to h = 44 were determined with an aver- 
age error of 31 °. These are shown in Table 1 together 
with the structure amplitudes and the correct phases. 
Other structures, with three or four identical molecules 
in the asymmetric unit were also solved using the 
same techniques. However, when a one-dimensional 
structure with two molecules in the asymmetric unit 
was used, the phase determination was only satisfactory 
to h =  10. The breakdown of phase determination in 
this case can be attributed to the fact that the two 
molecule structure contained less information than the 
three or four molecule structures. 
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Conclusions 

The  equa t ions  presented in this paper  are comple te ly  
general .  They  relate the  s t ructure  factors  of  any num-  
ber  of  crystal  forms of  the same molecule,  or o f  only  
one crystal  fo rm if there  is more  than  one molecule  
per asymmetr ic  unit .  The  fact tha t  the equat ions  are 
satisfied has been demons t r a t ed  and  their  abi l i ty to 
solve one-d imens iona l  s tructures indicates  the possibili-  
ty o f  using them for phase de te rmina t ion  with real 
s tructures.  

APPENDIX 

We wish to show tha t  equa t ion  (10) reproduces  the 
correct  Laue symmet ry  and  phase re la t ionships  for the 
s t ructure  factors  F~ regardless of  the symmet ry  of  
crystal  'h ' .  

Centric reflections 
The N ro t a t i on  matrices associated with the crystal  

'p '  may  be divided in to  pairs  [Cn], [CN-n+I] ( n =  1, 
2 . . . N / 2 )  such tha t  the opera t ion  [Cn][C~v-n+l] -1 is a 
space-group ro t a t i on  which gives rise to centric reflec- 
t ions  in cer ta in  zones of  the reciprocal  lattice. I t  can 
be shown that ,  for  a centric reflection 

p . [ C n ] = - p . [ C x - n + , ]  ( n = l ,  2 . . . N / 2 ) .  ( IA) 

Therefore  

p.  [ C d - h .  [ C ] = - p .  [CN-n+d+fi. [C]. (2A) 

As the magn i tude  of  Ghpn is unal tered when the direc- 
t ion  of  the a rgumen t  is reversed, we have f rom (2A) 

Ghgn = Gh~(N-n+l) • (3A) 

F r o m  equa t ion  (9) we have 

Sn = [Cn]Sx + d n .  (4A) 

Therefore ,  using (1A) it follows tha t  

p . S n =  - p  • SN-n+I + p  • d n + p  • dN-n+l • 

Therefore  

exp {27dp. S n } = e x p  { - 2 7 : i p .  S N - , ~ I } ,  (5A) 

since d n + d N - n + l  is a space g roup  t rans la t ion  and  for  
centric reflections 2 g p .  (dn +du-n+m) will be equal  to  
2nm, where m is an integer. 

Now,  rewri t ing (10) as 

U + oo .,v/2 
= z s [IFh, IGApn [Fp[ exp {i~#} -Vh=-oo ,=1 

exp {i(2rcp. S n - Z z c h .  S+oqz)}+lF~]G-hp(N-n+l ) 

exp {i(2rcp. S~,-n+~-Z~zh. S+~h)}]  

100~ 

0 ()'25 0"50 0"75 1"00 
Fig.2. Structure determination with three identical molecules 

per unit cell. The dashed line is the true structure, and the 
continuous line is the structure determined with an approx- 
imate knowledge of the position of the molecular centers 
and also IFol amplitudes which contained a 4 % experimental 
error. 

Table  1. Phase determination of structure shown in Fig. 2 
h is the index of the correct structure amplitude lEd and phase ~t00. A random set of errors +e has been added to each IFo[. 

Solution of the set of equations using coefficients based on the magnitudes (IFol + e) gave the phase angles ~0. 
h IFol IFol+e ~0 ~00 h IFol [Fol+e ~0 g00 
0 18.92 18.92 0 0 23 0.95 0.97 359 351 
1 1-31 1.27 173 169 24 2-43 2.53 166 148 
2 2"05 1"99 247 236 25 " 0.86 0.82 130 107 
3 9-91 10.56 244 228 26 0.50 0.54 281 261 
4 2.32 2.37 78 62 27 2.00 1-85 69 29 
5 2.43 2.50 157 145 28 0.29 0.29 359 308 
6 5.81 5"43 129 123 29 0-29 0-28 232 200 
7 3.21 2.91 290 295 30 1.21 1.24 299 273 
8 2"70 2.55 323 343 3l 0.26 0.27 126 124 
9 3-11 3.26 259 282 32 0.16 0.16 88 118 

10 2"98 3-02 76 98 33 0"25 0.24 78 142 
11 2.20 2-31 148 157 34 0.03 0-03 265 251 
12 1-24 1.14 101 90 35 0.09 0-09 353 222 
13 1"72 1"86 320 315 36 0"33 0"33 7 223 
14 1"14 1"08 71 40 37 0"43 0"43 191 63 
15 0"61 0.61 327 286 38 0.28 0-28 232 116 
16 1-32 1"26 202 188 39 0.33 0.33 195 94 
17 0.96 1"01 255 257 40 0.68 0.68 19 303 
18 0.97 1"05 63 86 41 0-26 0.26 68 15 
19 1.52 1"58 258 24 42 0.18 0.18 344 307 
20 1-14 1.07 87 111 43 0.50 0-50 191 195 
21 1.99 1.92 277 285 44 0.20 0.20 267 286 
22 1"57 1"42 246 242 

Translation parameters 
Initial values Sl =0.150; $2=0.520; S3=0"800 
Refined values $I =0-169; $2=0.500; $3=0.800 
Correct values $I =0.170; $2=0.500; $3=0"800 
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we see from (3A) and (5A) that the above simplifies to 
U +co N]2 

= X ,Y, [FhlGhpn IFpl exp {i~p} --V h=-co n=l 

cos [2rc(p. S n - h .  S) +oen] (6A) 
and the right hand side is completely real. The result is 
independent of the nature of crystal 'h'. 

A similar argument can be produced for any phases 
which are restricted to particular discrete values by 
space group symmetry, such as those produced by 
zonal reflections in space group P212~2~. whose values 
must be ~/2 or 3~/2. 

Systematic absences 
If S1 and Sn in (4A) are related by a Bravais type 

translation (giving rise to systematic absences) then 
[Cn] = [I]. Also since systematic absences due to screw 
axes or glide planes lie on an axis or in a plane respec- 
tively, it is clear that, in this case, 

p .  [Cn] = p  

where p is the reciprocal lattice vector corresponding 
to a systematic absence. Hence, in all cases 

p. Sn=p.  St+p .  dn. (7A) 

Now, a factor in the summation over n in (10) is 
N 
£7 exp (2~zip. Sn), which, from (7A), becomes 

n= l  

N N 
Z exp (2rcip. Sn)=  exp (2~zip. $1) Z' exp (2rcip. dn). 

n=l n= l  
(8A) 

But, if p is systematically absent we have 
N 
Z exp (2z:ip. dn)= 0 

n= l  

since dn represented the Bravais, glide or screw trans- 
lation element. Hence, from (8A) 

N 
Z" exp (2rcip. Sn)=  0 

n = l  

and it is clear that the sum over n for each value of 
h in (10) will be zero, when p corresponds to a space- 
group systematic absence. 

The effect of changing p to a Laue-symmetry related 
position 

The structure factor F~) is defined as 

= Ifl(x) exp {2rcip. x}dV.  (9A) 

Now, if [Cm] and dm are spac', group operators, we 
have 

X = i C m ] x ' - [ -  d m ( 1 0 A )  

where x and x' are equivalent positions. Eliminating x 
between (9A) and (10A) we obtain 

= 0 Iv0(x') exp {2~zip. ([Cm]x' + dm)}dV F~ 

Therefore 

{2~zip. din} fve(X ') exp {2rcip[Cm]x'}dV. F~=exp  

If we now let 
p'=p.  [Cm] ( l lA)  

then 
F~ = exp {2zcip. dm}Fp' 

or, after rearrangement, 

Fp ,=Fp  exp {-2zcip.  din} • (12A) 

That is, the effect on the left hand side structure factor, 
when the point p is changed to the symmetry related 
position p', is to rotate the phase by 2~rp. din. 

From (10), the right hand side of the equation for 
Fp, may be written 

U +°0 N 
- -  Z [F~[ exp {i(ah--2z~h. S)} X Ghl)n 
g h = - c o  n= l  

exp {2zrip'. Sn} (13A) 

and it is clear that the only changes are in the summa- 
tion over n. But the argument of Gn~,n is (p ' .  [Cn]-  
h .  [C] or (p.  [Cm][Cn]-h.  [C]) from (11A). Since [Cm] 
is a space group rotation, [Cm][Cn] are also space 
group rotations and merely reproduce the set [Cn] in 
a different order. Let this new set be [Cz], then the 
argument of G becomes (p. [Cz] -h .  [C]) and the set 
of Ghp,n for all n is reproduced by the set Gh~t for all 
l in a different order. 

Let us now apply the operators [Cm] and [dra] to 
each Sn in turn. We then obtain [Cm] Sn +dm which 
from (6) becomes 

[cM[cn] si+[cM an+am. 

If we now define [Cm]dn + dm to be dt and [Cm][Cn] 
as [Cz] as before, we then obtain [Cz]Sl + dl which, by 
analogy with (4A), is clearly the set of equivalent 
positions St. That is ,we can write 

St = [CmlSn + din. (14A) 

We can now deal with the product p ' .  Sn in the expres- 
sion (13A) above. 
From (11A), 

p ' .  S n = p .  [Cm]Sn. 

Then from (14A) 
p' . Sn = p .  ( S l -  din) 

and we can now rewrite (13A) as 

U +co 
z levi exp { - 2 n i p .  dm}--~-h=_c ° 

N 
exp {i(~n-2zrh. S)} • Gnpt exp {2zeip. Sz}, 

1=1 

which from (10) is clearly equal to exp { -  2zcip. dm}F~. 
Thus the equations are unchanged by moving to Laue- 
symmetry related lattice points, apart from the ap- 
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plication of the factor exp { - 2 r c i p .  dm} which, from 
(12A), is necessary to preserve the symmetry in the 
phases. 

The effect of  changing S to a space-group symmetry 
related position 

The argument  of the exponential  term in (10) in- 
volving h and S is 

¢ = an - 2rch. S .  

Let us now use, instead of  S, the space-group symme- 
try related position S', where 

S=[C']S'+d' 
and [C'] and d' are the space group operators. This 
space group operation has the effect in reciprocal space 
of producing symmetry related structure factors F~ and 
F~, such that  h' = h[C'] and ah' = ah-- 2rch. d' [see equa- 
tions (11A) and (12A)]. If  we sum the right hand side 
of(10) over h' instead of h, ~0' will be given by 

co' = an, - 2zch'. S' 

i.e. cp' -- ah - 2zeh. d' - 2rch. [C'][C']-I(S - d ' ) .  

Therefore ¢' = a~ - 2zch. S = ~0. 

Since cp is unchanged, it is clearly immater ia l  which of 
the equivalent positions of S is used in setting up the 
equations. 

A corollary is that if  S is changed to a molecular  
equivalent position, but one without any crystallogra- 
phic equivalence, we form a different set of  equations. 
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Methyl 1-thio-fl-o-xylopyranoside crystallizes in the triclinic system: space group P 1. Cell dimensions 
at -- 150°C are a = 4.320, b --- 7.611, c -- 13.285/~, ~ = 92-3,/? = 92-4, 7 = 112-1 °. There are two molecules 
in the asymmetric unit. Both molecules are present in the C1 chair conformation with normal bond 
lengths and angles, although there appears to be some shortening of the anomeric carbon-sulphur 
bond and the ring angle C(2)C(3)C(4) is significantly larger than tetrahedral. 

C(5) ?0(4)  

~ 3 )  

The ring oxygen atom, 0(5), does not participate in the hydrogen bonding system which is confined 
to the hydroxyl groups on C(2), C(3), and C(4). Data were recorded at a low temperature (-150°C) 
and atom coordinates refined to R =  0.105. 

Introduction 

Xylan, the main  chain of the acidic non-cellulosic poly- 
saccharides found in higher plant  tissues, is a polymer 

of (1-+4) linked fl-D-xylose residues. Al though normal ly  
found with attached side chains whose number,  point  
of at tachment to the main  chain and constituent mono- 
saccharide residues vary with the source and method 


