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thermal vibrations of the iodine atoms were also ob-
served along c. These facts indicate that the structure
of the crystal has no strong intermolecular force in the
¢ direction.

The authors would like to express their sincere grat-
itude to Professor T.Okamoto for suggesting the
problem, and for much helpful discussion and encour-
agement throughout the work. They also wish to
express their thanks to Professors M.Tsuboi and M.
Natsume for their valuable discussion. Heartiest
thanks are also due to the Hoansha for their financial
aid and to the Mitsubishi Chemical Industries for use
of an IBM 7090 computer.
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Restraints on phases are imposed when a molecule crystallizes in different crystal forms or occurs
more than once per asymmetric unit. These restrictions are expressed by the equations

, U +=
|Fpl exp {za,,}:v z

h=—o

N
|[Fnl exp {ian Z Gnpn €Xp {ipnpn}.

n=1

Here |Fpl, ap, |Fr|, and an are the structure factors and their phases at the reciprocal lattice points
p and h in either the same or different crystals. Grp» and grpn are simple functions of the rotation and
translation parameters relating the molecules in the structures concerned. These equations have been
tested in both one and three dimensions. In the one-dimensional case the same arbitrary electron
density distribution was repeated several times at irregular intervals within the unit cell. All chosen
distributions led to equations that could be solved correctly, suggesting that in general there is a unique
solution. Refinement of initial approximate translation parameters during phase solution was also

successful.

Introduction

When there are chemically identical molecules in dif-
ferent crystallographic environments, the phase prob-
lem may be approached in three distinct stages. The
first stage involves determining the three rotation pa-
rameters that relate any two molecules. The rotation
fuction (Rossmann & Blow, 1962; Sasada, 1964) has

AC21-5*

proved successful for this purpose in a number of cases
{Blow, Rossmann & Jeffery, 1964; Prothero & Ross-
mann, 1964 ; Dodsen, Harding, Hodgkin & Rossmann,
1966 ; Palmer, Palmer & Dickerson, 1964). The second
stage involves determining the translation parameters
that relate these molecules. A method of determining
these parameters has been worked out in a special situa-
tion when the independent molecules are within the



68 RELATIONSHIPS AMONG STRUCTURE FACTORS

same crystal, related by a non-crystallographic two-
fold rotation axis (Rossmann, Blow, Harding & Coller,
1964). This was used in the case of chymotrypsin
(Blow et al., 1964) and in insulin (Dodsen et al., 1965).

The third and final stage is to determine the phases,
given the results of the first two stages. Equations have
been derived for this purpose in the case of two inde-
pendent molecules within the same crystal (Rossmann
& Blow, 1963). These equations were solved in a two-
dimensional problem for the innermost 35 reflections,
but success was probably partly due to the somewhat
linear shape of the molecule giving rise to a large low
order reflection. The method is also exceedingly ex-
pensive in terms of computer time, but a simpler and
more powerful method of solution was given by Ross-
mann & Blow (1964). Application of the latter to im-
proving the phases of the two independent a-chymo-
trypsin molecules (Blow et al., 1964) showed that in
this case the method did not give a unique answer.

The present paper derives a set of equations for the
third stage which are perfectly general. We show that
a method based on that of Rossmann & Blow (1964),
interlaced with refinement procedures, produces unique
solutions, and that a general solution to the translation
problem may be obtained simultaneously.

The equations

The structure factor F, at the reciprocal lattice point
p may be expressed as

Fp= 2% f S 01(xzn) exp {27ip . Xy }dxp (1

where there are N identical molecules in the unit cell
of the crystal, each molecule being enclosed within a
volume U, and g;(xx) is the electron density at the point
Xy in the nth molecule. Let

Xn=[Cn]x; +dp 2

where [C,] is the rotation matrix and dj, the translation
vector that relate the equivalent points x; and x,, in the
first and nth molecules repectively. Thus [C,]=[I], the
identity matrix, and d, =0. If there is only one molecule
per asymmetric unit then [Cp] and dy, are purely space
group operators,

Since ¢:1(x»)=01(x;) by definition, we have from (1)
and (2)

Fy= 2\ ) exp (2rip . (Colxi +d)dx, . ()

Now let g(x) be the electron density at a point x in a
second crystal which contains the same molecule so
that o(x) =0,(x,) within the molecular volume U. If the
‘second’ crystal is the same as the first then ¢ and g,
are identical. Expressing o(x) in terms of a Fourier
summation we get

+ o0
Q(l‘i)=L 2 Fpexp {—2nih.x} 4)
Vh:—co

where Fy, is the structure factor at the reciprocal lattice
point h and V is the volume of the unit cell.

Let x=[C]. x,+d )

where [C] is the rotation matrix and d the translation
vector relating the equivalent points x; and x in the
‘p’ and ‘K’ crystals respectively.

We can eliminate x from (4) by using (5), and this
gives us o(x;) which, by definition, is identical with
0i(x;) within the volume U. Putting this into (3) we
obtain

N 1 4+
Fp= S 5, % Faexp{=2nih. (C]. xi+ )}
n=1JU h=—c
exp {27ip . ([Cx] . X; +dn)}dX,
which, after rearrangement becomes

l
Fp=7 2 ZFhexp {27i(p . d,—h. d)}
h=—o00 n=1

Suexp 27i(p . [Cal = . [C] . x:}dXs . (6)

The integral part of the expression is the same as that
described by Rossmann & Blow (1962) and is the
Fourier transform of the volume U. It may be repre-
sented by a magnitude UGhp, and a phase Qppz. In
the case of a sphere or a parallelepiped, the two most
commonly used ‘molecular envelopes’, the phase is
given by

Qppn=27p . [Ca]—h.[C]).S, ™

where S, is the position of the geometric center of the
first molecular envelope in the ‘p’ crystal.

U+
.. Fp=7h_z_‘ 2_?Fh exp {2ni(p . dp—h . d)}Gppn
exp {27i(p . [Ca]—h . [C]) . S}
+o0

ie. Fp=— X E FivGrpn exp {27i

h=—w n=1
[p.(dz+[Cq] . S1)—h.(@+[C].S)I}. (8)

Let Sy, be the nth position of the centre of the volume
U in the ‘p’ crystal and let S be a corresponding point
in the ‘4’ crystal, then from (2) and (5) we get

Sz=[Cy].S;+d, and S=[C].S;+d. (9)
By writing the structure factors in terms of magnitude

and phase and from (8) and (9) we arrive at the final
equations

U +» N
|Fp| exp {iap} = Vo 2 |Fal exp {ian} ZIGMm
—=—0 =

exp {27i(p . S»—h.S)}. (10)
As an example of an expression for Gppn We can
take the case of a sphere of radius R,
3(sin 2t HR—2nHR cos 2nHR) a1
(2rHR)? ’
where H is the length of the vector p.[C,]—h.[C].
The shape of this function is shown in Fig.1 of Ross-

Ghzm=
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mann & Blow (1962). In general, as H increases Grpn
decreases, so only those values of h which make H
small need be included in equation (10), the remaining
h values giving rise to negligible values for Gppn.

Once the rotation and translation parameters relating
all molecules in every crystal have been determined, the
only unknowns in (10) are the phases oz and ap.

It must be pointed out that (10) refers only to a
single set of equations, whereas several such sets of
equations may generally be obtained for a single prob-
lem. If we have two crystals 4 and B, then making
A the ‘A’ crystal and B the ‘p’ crystal will produce a
different set of equations than when A is the ‘p’ and
B is the ‘P’ crystal. In addition, (10) refers to only one
molecule in crystal ‘4’ — that located within the envelope
centered on S — but generally there will be more than
one molecule in the unit cell of this crystal. Different
sets of equations result by taking S at each independent
molecule in turn, but the same set of equations is
obtained when the different positions of S are related
by space-group symmetry. This is shown in the Ap-
pendix. It should also be noted that the ‘4* and ‘p’
crystals can be identical, though if there is only one
molecule per asymmetric unit, the equations reduce to
F,=F, and give no phase information. With more
than one independent molecule, however, a legitimate
set of equations is obtained.

Clearly, the more crystals and independent molecules
there are, the more equations can be set up in relation
to the number of unknown phases. The problem there-
fore becomes progressively more over-determined as
the number of independent molecules increases.

Accuracy of the equations

In a practical case, it will be difficult to define an envel-
ope of volume U within which a single molecule is
completely contained without any part of any other

imaginary

1\

Fobs
Fealc

%calc

Aobs
> real

Fig.1. W is the distance between the end of the vector F, or
left hand side of the equations, and the end of the vector
Fe, or sum of the right hand side terms.

molecule. Our experiments have not allowed for this
type of error. It is hoped that if only a small amount
of electron density is present in the envelope in ad-
diton to the molecule, or if only a small part of the
molecule is left outside the envelope, then the accuracy
with which the equations are satified will not be greatly
affected. Subsequent refinement of the structure should
reveal the molecule more accurately. This, in turn,
will lead to more accurate satisfaction of the equations.

The accuracy of the equations may be defined by
the usual crystallographic R index. If F, is the left hand
side of an equation, F. the resultant of the right hand
side sum and W is the magnitude of the vector differ-
ence btweeen them, as in Fig. 1, we can define

_zw
T Xl

The equations have been set up in a three-dimen-
sional case (to be published) in which one crystal
consisted of four identical molecules in the unit cell
of space group P2; and another crystal of four mol-
ecules in the unit cell of space group P2;2,2,. The
magnitude of Gnp, was assumed to be negligible for
arguments greater than 1-75 and only the fifty largest
terms were considered in each equation. In this case
the residual was 18%. In every one-dimensional case
for which ‘observed’ structure factors were calculated
and the known phases used for substitution in the
equations, a residual of less than 3%, was obtained.
Even after introducing a 4% random error on the
|Fo] values, R was less than 5%;.

R

Solutions of the equations

We have solved these equations for the phases of
unknown structures under certain limited conditions,
using methods similar to those described by Rossmann
& Blow (1963, 1964) in conjunction with iterative re-
finement procedures. In practice, however, only rough
values of S and S, in equation (10) will be known from
packing considerations, so these were also refined dur-
ing the solution of the equations. Fig.2 shows a hypo-
thetical one-dimensional structure in which there are
three identical ‘molecules’ per asymmetric unit and
which was used to test the equations. After imposing
a 4% random error on the |F,| values and starting
with approximate relative positions of the molecules,
all phases out to A=44 were determined with an aver-
age error of 31°. These are shown in Table 1 together
with the structure amplitudes and the correct phases.
Other structures, with three or four identical molecules
in the asymmetric unit were also solved using the
same techniques. However, when a one-dimensional
structure with two molecules in the asymmetric unit
was used, the phase determination was only satisfactory
to h=10. The breakdown of phase determination in
this case can be attributed to the fact that the two
molecule structure contained less information than the
three or four molecule structures.
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Conclusions

The equations presented in this paper are completely
general. They relate the structure factors of any num-
ber of crystal forms of the same molecule, or of only
one crystal form if there is more than one molecule
per asymmetric unit. The fact that the equations are
satisfied has been demonstrated and their ability to
solve one-dimensional structures indicates the possibili-
ty of using them for phase determination with real
structures.

APPENDIX

We wish to show that equation (10) reproduces the
correct Laue symmetry and phase relationships for the

structure factors F, regardless of the symmetry of
crystal ‘A’

Centric reflections

The N rotation matrices associated with the crystal
‘p’ may be divided into pairs [Cy), [Cn-ns] (n=1,
2...N/2) such that the operation [Cr][Cy-nii]7! is a
space-group rotation which gives rise to centric reflec-
tions in certain zones of the reciprocal lattice. It can
be shown that, for a centric reflection

p.[Cal==p.[Cy—nu] (n=1,2...N/2). (14)
Therefore
P.[Cal—h.[Cl=—p.[CNn-nu]+h.[C]. (24)

As the magnitude of Gypn is unaltered when the direc-
tion of the argument is reversed, we have from (24)

thn=th(N—n+1) . (3A)
From equation (9) we have
Sn=[Cr]Si+da . (44)
Therefore, using (14) it follows that
pP.Sa=—p.Snv-n+p.do+p.dy—snyt.
Therefore
exp {27ip . Sn}=exp {—27ip. Sn-nu1}, (54)

since dy+dn—_pn4; i a space group translation and for
centric reflections 2zp . (d, +dx—n,;) Will be equal to
27m, where m is an integer.
Now, rewriting (10) as
+ Nj2

. U
[Fyp| exp {iop} = 7, z {l“FhlGhzm

exXp {1(27'[]) .Sp—2r7h. S+OC}L)}+|F3|GE"(N__7L+1)
exp {i(2np . Sn—ns1—27h . S+on)}]

A

|

p i\i\!\

S » . - /] X
025 0'50 075 100

Fig.2. Structure determination with three identical molecules
per unit cell. The dashed line is the true structure, and the
continuous line is the structure determined with an approx-
imate knowledge of the position of the molecular centers

and also |F,| amplitudes which contained a 4 % experimental
error,

Table 1. Phase determination of structure shown in Fig.2

h is the index.of the correct structure amplitude [F,| and phase «%. A random set of errors +¢ has been added to each |Fy|.
Solution of the set of equations using coefficients based on the magnitudes (|Fo| +¢) gave the phase angles a0.

h |Fol |Fol ¢ o0 o9
0 18-92 18:92 0 0
1 1-31 1-27 173 169
2 2:05 1-99 247 236
3 9-91 10-56 244 228
4 2:32 2-37 78 62
5 2:43 2:50 157 145
6 5-81 543 129 123
7 321 2:91 290 295
8 2:70 2-55 323 343
9 3-11 3-26 259 282
10 2:98 3-02 76 98
11 2:20 2:31 148 157
12 1-24 1-14 101 90
13 1-72 1-86 320 315
14 1-14 1-08 71 40
15 0-61 0-61 327 286
16 1-32 1-26 202 188
17 0-96 1-01 255 257
18 0-97 1-05 63 86
19 1-52 1-58 258 24
20 1-14 1-07 87 111
21 1-99 192 277 285
22 1-57 1:42 246 242

h 1Fol [Fol£e o0 %

23 0-95 0-97 359 351

24 2:43 2-53 166 148
25 - 0-86 0-82 130 107
26 0-50 0-54 281 261

27 2-00 1-85 69 29
28 0-29 0-29 359 308
29 0-29 0-28 232 200
30 1-21 1-24 299 273
31 0-26 0-27 126 124
32 0-16 0-16 88 118

33 0-25 0-24 78 142
34 0-03 0-03 265 251

35 0-09 0-09 353 222
36 033 0-33 1 223
37 0-43 0-43 191 63
38 0-28 0-28 232 116
39 0-33 0-33 195 94
40 0-68 0-68 19 303
41 0-26 0-26 68 15
42 0-18 0-18 344 307
43 0-50 0-50 191 195
44 0-20 0-20 267 286

Translation parameters

Initial values

8§1=0-150; S,=0-520; S3=0-800

Refined values S;=0-169; S,=0-500; .S3=0-800
Correct values S;=0:170; S;=0-500; S3=0-800
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we see from (34) and (54) that the above simplifies to
+ Nj2

Z th‘thn

=—w n=1

. U
|Fypl exp {iop} = v
k

cos [2n(p . Sn—h.S)+as] (64)
and the right hand side is completely real. The result is
independent of the nature of crystal ‘A4’

A similar argument can be produced for any phases
which are restricted to particular discrete values by
space group symmetry, such as those produced by
zonal reflections in space group P2,2,2,. whose values
must be 7/2 or 3x/2.

Systematic absences

If S; and S, in (44) are related by a Bravais type
translation (giving rise to systematic absences) then
[Cx]=[]. Also since systematic absences due to screw
axes or glide planes lie on an axis or in a plane respec-
tively, it is clear that, in this case,

p.[Cu]l=p

where p is the reciprocal lattice vector corresponding
to a systematic absence. Hence, in all cases

(74)

Now, a factor in the summation over » in (10) is

p.Sx=p.Si+p.dsn.

N
X exp (2zip . Sz), which, from (74), becomes
n=1

N N
X exp (2nip . Su)=exp (2nip . S;) Z exp 2nip . dn) .
n=1 n=1
(84)
But, if p is systematically absent we have
N
2 exp 2rip . dg)=0
n=1

since d,, represented the Bravais, glide or screw trans-
lation element. Hence, from (84)

- N
2 exp 2nip . Sa)=0
n=1

and it is clear that the sum over n for each value of
h in (10) will be zero, when p corresponds to a space-
group systematic absence.

The effect of changing p to a Laue-symmetry related
position
The structure factor Fj is defined as

[Fp|= S o(x) exp {2=ip . x}dV .
Now, if [Cn] and dj are spac: group operators, we

have X ={Cr]x’ +dm (104)

where x and x’ are equivalent positions. Eliminating x
between (94) and (104) we obtain

(94)

Fp= Sv@(x» exp {27ip . (Crlx' +dm)}dV

Therefore
Fp=exp {2xip . dm} S o(x") exp {2nip[Cm]x'}dV .

If we now let

p'=p.[Cunl (114)
then
Fp=exp {2nip . dn}Fp
or, after rearrangement,
Fp =Fpexp {—2nip.dn}. (124)

That is, the effect on the left hand side structure factor,
when the point p is changed to the symmetry related
position p’, is to rotate the phase by 27zp . dp.

From (10), the right hand side of the equation for
Fyp- may be written

U +

% 2z

h=—c0

N
[Fal exp {i(ar—2mh.S)} 2 Gupn
n=1

exp {2nip’ . Sp} (134)

and it is clear that the only changes are in the summa-
tion over n. But the argument of Gap'n is (P . [Cn] —
h.[C]lor (p.[Crl[Cr]—h.[C]) from (11A4). Since [Cn]
is a space group rotation, [Cx][Cx] are also space
group rotations and merely reproduce the set [Cy] in
a different order. Let this new set be [C;], then the
argument of G becomes (p . [C;]—h . [C]) and the set
of Grypn for all n is reproduced by the set Gy for all
/ in a different order.

Let us now apply the operators [Cn] and [dx] to
each S, in turn. We then obtain [Cn] Sy £ d» which
from (6) becomes

[CallCal S1+[Cm] dn+dm .
If we now define [Cn]dy +dnm to be d; and [Cn][Cx]
as [Cj] as before, we then obtain [C;]S; +d; which, by

analogy with (44), is clearly the set of equivalent
positions S;. That is ,we can write

We can now deal with the product p’ . S5 in the expres-
sion (134) above.
From (114),

p/ . Sn:p . [Cm]Sn .

Then from (144)
p .Se=p.Si—dn)
and we can now rewrite (134) as

U +=
exp {—2znip . dm}?,, Z |Fyl
=—a
N
exp {i(an—2nth . S)} = Gpp1 exp {27ip . Si},
=1

which from (10) is clearly equal to exp {—27nip . dn}Fp.
Thus the equations are unchanged by moving to Laue-
symmetry related lattice points, apart from the ap-
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plication of the factor exp {—2nip . d»} which, from
(124), is necessary to preserve the symmetry in the
phases.

The effect of changing S to a space-group symmetry
related position

The argument of the exponential term in (10) in-
volving h and S is

p=o0p—2rh.S.

Let us now use, instead of S, the space-group symme-
try related position S’, where

S=[C']S'+d’

and [C'] and d’ are the space group operators. This
space group operation has the effect in reciprocal space
of producing symmetry related structure factors F and
Fp- such that h"=h[C'] and ap' =ap—27h . d’ [see equa-
tions (114) and (124)]. If we sum the right hand side
of (10) over h’ instead of h, ¢’ will be given by

@ =ap—2nh’ . S’
ie. ¢'=ap —27h . d’' —2zh . [C[C']-Y(S—-d').
Therefore ¢'=a; —2nh . S=¢.

Since ¢ is unchanged, it is clearly immaterial which of
the equivalent positions of S is used in setting up the
equations.

Acta Cryst. (1966). 21, 72

A corollary is that if S is changed to a molecular
equivalent position, but one without any crystallogra-
phic equivalence, we form a different set of equations.
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Methyl 1-thio-8-D-xylopyranoside crystallizes in the triclinic system: space group P1. Cell dimensions
at —150°C are a=4-320, b=7-611, c=13-285 A, «=92-3, =924, y=112:1°. There are two molecules
in the asymmetric unit. Both molecules are present in the C1 chair conformation with normal bond
lengths and angles, although there appears to be some shortening of the anomeric carbon-sulphur
bond and the ring angle C(2)C(3)C(4) is significantly larger than tetrahedral.

0(3)
c(2) 0(2)

The ring oxygen atom, O(5), does not participate in the hydrogen bonding system which is confined
to the hydroxyl groups on C(2), C(3), and C(4). Data were recorded at a low temperature (— 150°C)
and atom coordinates refined to R=0-105.

Introduction

Xylan, the main chain of the acidic non-cellulosic poly-
saccharides found in higher plant tissues, is a polymer

of (1—-4) linked B-D-xylose residues. Although normally
found with attached side chains whose number, point
of attachment to the main chain and constituent mono-
saccharide residues vary with the source and method



